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We investigate the importance of finite-size effects in simulations of nucleation processes. Most
molecular dynamics simulations of first order phase transitions, such as vapor-liquid nucleation, are
performed in the canonical NVT ensemble where, owing to the fixed total number of molecules N,
the growth of the new phase causes the depletion of the metastable phase. This effect may lead to
significant errors in the simulation and even to the impossibility of observing nucleation in a small
finite system. We present a theory to estimate the system size beyond which these finite-size effects
are expected to be negligible. This optimization saves valuable calculation time and can extend the
range of supersaturations and rates attainable by simulations by several orders of magnitude. Our
results are applicable to diverse situations, such as crystallization, capillary condensation, or the
melting of nanoclusters. © 2006 American Institute of Physics. �DOI: 10.1063/1.2402167�

I. INTRODUCTION

First order phase transitions play a significant role in
science and nature as well as in technical applications. Ex-
amples range from condensation and melting to protein crys-
tallization and galaxy formation, thus embracing a wide va-
riety of scientific fields. These apparently very different
phenomena share in common that their appearance requires
the formation of a small embryo or nucleus of the new phase,
which involves the overcoming of an energetic barrier. This
initiating process is called nucleation and it is inherent in
most first order phase transitions.1,2 A proper understanding
of the molecular mechanisms underlying this phenomenon is
therefore of outmost interest.

In recent years, computer simulations have become an
invaluable resource to investigate nucleation at a molecular
scale. In particular, molecular dynamics �MD� simulations
open up the possibility of tracking the actual dynamics of the
birth of the new phase in time.3,4 The real process of nucle-
ation can be reproduced on the computer by starting from a
homogeneous supersaturated vapor and letting the system
evolve until a nucleus or a subsequently stable drop forms.
However, the formation of a nucleus is a rare event and
difficult to observe in such a “brute-force” simulation. Much
higher supersaturations and consequently lower nucleation
barriers than in experiment are needed to observe at least one
nucleation event in the limited time accessible in a simula-
tion. Typically, the accessible range in terms of nucleation
rates is around 1022–1024 cm−3 s−1, whereas the experimen-
tally measured rates in diffusion and expansion chambers are
commonly smaller than 1010 cm−3 s−1. Therefore, the limita-
tions in time scales and number of molecules imposed by

computer capabilities restrict the conditions at which nucle-
ation can be simulated to be very far from those in experi-
ments, unless a very small system or more complicated and
indirect simulation techniques are used.5–7

MD simulations are usually performed in the canonical
NVT ensemble in contrast to constant pressure or constant
chemical potential conditions typical in experiments, al-
though in fact these conditions are rather assumed than
achieved by any experimental constraint. Naturally, the va-
por molecules condense to liquid droplets but the reduction
of the pressure of the vapor due to this effect is completely
negligible for the comparatively low nucleation rates �the
number of nuclei formed per unit time and space� encoun-
tered in experiments. It is therefore reasonable to assume that
for the nucleation stage, the system is an “open” system with
a constant pressure or constant chemical potential.

However, there are very important differences between
the process occurring in a closed �i.e., NVT� or in an open
�i.e., �VT or NpT� system that become dramatically mani-
fested in small systems. In particular, in a closed system the
formation of the new phase causes a rapid consumption of
the metastable phase, leading to significant finite-size effects.
These are aggravated by the relatively small number of mol-
ecules that can be handled and the very high nucleation rates
required for observing a nucleation event in the short time
scale of a simulation. Just as an example, consider a cluster
forming in a system containing 100 molecules. Here, each
condensing molecule already reduces the supersaturation of
the vapor by 1%. This depletion thus may give rise to severe
discrepancies between the results obtained from simulations
and those of experiments or theoretical models, because the
nucleation rate is extremely sensitive to the actual supersatu-
ration of the system at hand. In addition, the fact that one has
to work with a small number of molecules and high super-a�Electronic mail: jan.wedekind@uni-koeln.de
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saturations leads to very small system volumes in the simu-
lation, which may also have a significant influence on the
results.

Another complication is that nucleation in itself is a
highly stochastic process, and a single simulation of a nucle-
ation event usually does not provide much information. If we
repeat a real experiment under the same conditions many
times, the resulting nucleation rate will show considerable
scattering. Even worse in a simulation, the onset of nucle-
ation will occur after a nonpredictable time gap or not even
occur at all in the simulated time span depending on the
starting configuration. Thus, a large number of simulation
runs, with different starting configurations of the condensing
gas phase, have to be performed to accumulate a sufficient
statistics from many nucleation events. At first glance, one
might argue that it could be possible to improve the statistics
by simulating a system big enough so that it shows more
than one nucleation event, e.g., 10 or 100 clusters. However,
such a situation is not desirable for many reasons: first, a
much larger system is needed leading to much longer calcu-
lation times. Second, the supersaturation must be even
higher, potentially leading to even stronger depletion effects
of the kind we are about to discuss in more detail in this
paper. Third, clusters would not form at the same time but
consecutively under different conditions. The accurate de-
scription of the rate and the work of formation for each clus-
ter would then be an even more complicated task.

In order to minimize these finite-size effects, there is
typically no objective criterion to select the number of mol-
ecules N in a simulation besides “the bigger, the better.”
However, calculation time scales as O�N2� or, in the best
case, as O�N log N�, so that we quickly reach the limitations
of computer capabilities. The question that naturally arises
is: how small can I safely choose my system without signifi-
cant size effects? In this paper, we address this question by
investigating the importance of finite-size effects in �MD�
simulations of nucleation. The modified liquid drop �MLD�
model introduced by Weakliem and Reiss8 and further devel-
oped by Reguera et al.9 provides us the ideal framework to
answer this question. We will show that the depletion of the
mother phase that accompanies the formation of the new
phase in a canonical simulation may lead to significant finite-
size errors in small systems, and even to situations in which
nucleation cannot be observed at all in a simulation. We will
describe a theory that estimates these finite-size effects and
show how to use these predictions to optimize the system
size for a simulation. Using this optimization, it is possible to
extend the range of supersaturations and rates attainable by
direct simulations by several orders of magnitude. We will
focus on the effects related directly to the finite number of
molecules and its depletion without entering the discussion
of other kinds of finite-size effects already discussed
elsewhere.4,10–14 For the sake of simplicity, we will study one
of the simplest examples of a nucleation process, namely, the
condensation of a vapor, although the methods and results
can be applied to many other situations.

The structure of this paper is as follows: first, in Sec. II,
we shall review the basic features �and weaknesses� of clas-
sical nucleation theory �CNT� and introduce the MLD to

describe nucleation in a finite closed system. In the third
section, we shall quantify the importance of finite-size ef-
fects for a typical situation and use this information to opti-
mize nucleation simulations in terms of system size. In ad-
dition, we will discuss the potential relevance of these
deviations to some MD results found in literature. Section IV
presents results from MD simulations illustrating the validity
of our findings. Finally, the main conclusions are summa-
rized in Sec. V.

II. CNT IN A FINITE SYSTEM: THE MODIFIED LIQUID
DROP MODEL

In the classical picture, the condensation of a vapor is
initiated by the formation of small aggregates or clusters
of molecules. At a constant pressure or chemical potential,
the work of formation �G�n� of a cluster of size n is
given by the simple classical nucleation theory �CNT�
expression,1,15–18

�G�n� = − n�� + �A , �1�

which consists of a volume term related to the difference in
chemical potential �� between the vapor and the liquid
phase, and a surface work needed to build the liquid interface
of area A and the surface tension �. In CNT, the vapor is
considered as ideal, and the liquid cluster is assumed as an
incompressible spherical drop with a sharp interface and the
density and planar surface tension � of the bulk liquid. With
these assumptions, the difference in chemical potentials be-
comes ��=kT ln S0+ peqvl�S0−1�, and �G�n� finally reads
as

�G�n� = − nkT ln S0 + �s1n2/3 + peqnvl�S0 − 1� , �2�

where S0= p0 / peq is the supersaturation, p0=NkT /V is the
pressure of the �ideal� vapor, k is the Boltzmann constant,
s1= �36��l

2�1/3 is the surface area per monomer, vl is the
volume per molecule in the bulk liquid, and peq is the equi-
librium vapor pressure of the bulk liquid at temperature T.
The last term is the pressure-volume work required to grow a
cluster within the vapor, which is usually very small and
commonly neglected, but we will keep it in our analysis for
the sake of accuracy.

Figure 1�a� plots �G�n� versus the size n of the cluster

FIG. 1. �a� Free energy barriers according to CNT �solid� and MLD
�dashed� as a function of cluster size n for a system containing 100 Lennard-
Jones atoms at 85 K in a volume of 4000�LJ

3 . �b� Same for a volume of
6000�LJ

3 .
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for a typical system of 100 Lennard-Jones �LJ� argon atoms
in a volume of 4000��LJ�3 at T=85 K �parameters used for
all calculations are compiled in Table I�. The competition
between the volume and surface terms gives rise to a maxi-
mum of �G�n�, known as the nucleation barrier that occurs
at the critical nucleus size,

n* = �2s1

3

�

��
�3

, �3�

and has a value �G*=�G�n*�= �n*�� /2�. Once again we
would like to point out that we deal with an open ensemble
in the framework of CNT: we assume the vapor pressure and
thus the supersaturation to be constant for the nucleation
stage of the phase transition.

In contrast, most simulations are performed in the ca-
nonical ensemble, where NVT are fixed. In this case, the
formation of a drop of n molecules implies the subtraction of
n molecules from the vapor, and thus changes the supersatu-
ration in the system. Consequently, the work of formation of
a drop is generally different. Using the same approximations
involved in CNT, the MLD model �Ref. 9� yields the work of
formation �F�n� of a cluster of n molecules in a closed NVT
system to be

�F�n� = − nkT ln
p1

peq
+ �A + n�kT − peq� + NkT ln

p1

p0
,

�4�

where p1= �N−n�kT / �V−nvl� is the actual vapor pressure ex-
erted by the remaining �N−n� vapor molecules when a clus-
ter of size n is present in the system. In Eq. �4�, the first three
terms are similar to CNT except for the fact that the pressure
p1 is not fixed but depends on n. The fourth term arises from
the depletion of vapor molecules when a droplet is formed.
In the thermodynamic limit, Eq. �2� is recovered. Again, the
size of the critical cluster nNVT

* and the height of the nucle-
ation barrier in the closed system are given by
���F /�n�nNVT

* =0 and �F*��F�nNVT
* �.

The differences between the work of formation in a
closed or in an open system are evident in Fig. 1. The dashed

curve in Fig. 1�a� plots �F�n� for the same system discussed
above. Contrary to the case of an open system and the CNT
expression, �F�n� shows a second extremum, a minimum
corresponding to a stable droplet in equilibrium with the
remaining vapor in the system. Additionally, the shape of
�F�n� and the height and location of the barrier �F* depend
critically on the system size. Figure 1�b� now shows �F�n�
and �G�n� in a larger volume of 6000��LJ�3 at the same
temperature. In the closed system, we no longer have a maxi-
mum in the free energy of formation: a simulation under
those conditions will not show a nucleation event, even
though the system is supersaturated. The special nature of a
closed system prevents nucleation at conditions in which
they would occur experimentally in an open system. In other
words, it is not possible to observe nucleation at an arbitrary
supersaturation in very small systems.

The quantity of prime interest besides the size and work
of formation of a critical cluster is the nucleation rate. The
nucleation rate J generally is calculated in the framework of
the Zeldovich-Frenkel theory18,19 as

J = K exp�−
�W*

kT
� , �5�

where K is the so called kinetic prefactor, which can be
obtained from kinetic theory and it is generally found to be
comparatively invariant towards smaller changes in the pa-
rameters of the system.20 In Eq. �5� we denoted the work of
formation by W to indicate that depending on the constraints
of the system at hand we might need to use the Helmholtz or
Gibbs free energy to evaluate the nucleation rate.

Both CNT and MLD share the same approximations and
shortcomings, namely, the assumptions of considering an
ideal vapor, an incompressible liquid with bulk density, and
the planar surface tension used in the description of the sys-
tem. Additionally, one might argue that it is questionable to
apply thermodynamics to a system that only consists of a
handful of particles. Still, it has been found that this ap-
proach, despite its simplicity, describes the general behavior
of the system surprisingly well. For example, the critical
cluster size is predicted pretty accurately in most cases.21–26

Unfortunately, the predictions of CNT for the actual nucle-
ation barrier are not that precise. However, since we are only
interested in the deviations that may arise from finite-size
effects, knowledge of the actual quantitatively correct value
of W* is not strictly necessary. Moreover, it has been ob-
served empirically and represented by the McGraw-
Laaksonen scaling relations that the difference between CNT
and the correct work of formation can be accounted for by
just one temperature dependent constant.27 Thus, the devia-
tions from finite size will, as a first approximation, simply
add to the potential error of the CNT result. Accordingly,
even though quantitatively both CNT and MLD might be
inaccurate, the correction arising from finite-size effects is
expected to be roughly the same. If we know the difference
between �F* and �G* we thus may predict the deviation in
the nucleation rate due to finite-size effects by

�J �
JMLD

JCNT
= exp��G* − �F*

kT
� . �6�

TABLE I. Parameters and physicochemical quantities used in this work.

Argon properties

Mass: M =0.04 kg/mol
Critical temperaturea: Tc=150.86 K
Critical pressurea: pc=4.86 MPa
Triple pointa: Ttriple=83.8 K

Phase change data �gas-liquid, bulk properties, �=1−T /Tc�:

Vapor pressureb: p= pc exp�Tc

T
�−5.904�+11.25�1.5−0.763�3−1.697�6��

Liquid densityc: �=565.13�1+0.241 66�+1.941 54�0.41469�
Surface tensiond: �=0.037 78�1.277

Lennard-Jones parameters: �LJ=120 K, �LJ=0.3405 nm

aReference 39.
bReference 40.
cReference 41.
dReference 42.
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This deviation between the open and the closed systems
depends on the system size and provides an estimate of the
discrepancy one may expect between the simulation results
and the actual nucleation rates. In the next section, we will
analyze the importance of these deviations for the condensa-
tion of LJ argon in typical situations.

III. RESULTS AND DISCUSSION

A. A case study

We will study the differences between nucleation in a
closed versus an open system under different sizes and con-
ditions in order to show the influence of finite-size effects in
more depth. As an example, let us analyze a system of LJ
argon atoms whose properties are summarized in Table I.

Figure 2 is a contour plot of the difference in nucleation
barriers �F*−�G*, in critical cluster sizes �n
= �nNVT

* −n*�, and in nucleation rates �J for a system of LJ
argon atoms at 85 K as a function of N and V. The straight
dashed lines mark constant densities and, since the vapor is
assumed to be ideal, constant supersaturations S0. At a fixed
temperature, the predictions of CNT only depend on S0 and
therefore, �G*, n*, and JCNT are constant along these lines.
The deviations in the barrier and the critical size are in the
range of a few kT or atoms, respectively, which translates in
�J of up to several orders of magnitude. A more dramatic
effect of the confinement is the existence of an important
region of parameters, denoted by the light gray areas in the
plot, where nucleation in the small finite system is not pos-
sible at all. This also imposes a severe limitation on the order
of magnitude of the nucleation rates that can be obtained. In
this case, it would not be possible to have a critical cluster
bigger than approximately 30 molecules or obtain nucleation
rates below 1020 cm−3 s−1 in a simulation with less than
200 molecules. We can also see how big and how far we are
from the range accessible to experimental nucleation rates,
which for instance in the case of expansion chambers is typi-
cally of 105–1010 cm−3 s−1.22,25,26

One aspect might appear puzzling or counterintuitive at
first sight: if we look at a constant number of molecules, say
N=100, and then increase the volume we finally reach the
region where the vapor is still supersaturated but no nucle-
ation is possible. The reason is that the initial supersaturation
gets smaller as we increase the volume. Accordingly, the size
of the critical cluster gets bigger which increases the deple-
tion effects to the extent that a developing cluster has con-
sumed so many vapor molecules on his way to the critical
size that the system is not supersaturated anymore—the clus-
ter cannot keep on growing and dissolves again.

Figure 3 plots the deviations in the nucleation barrier for
systems of up to 1000 molecules at the same temperature.
We can observe that the range of volumes for which the error
in the nucleation barrier is within a reasonable limit of 0.5kT
expands as the number of particles is increased. Similarly,
the range of cluster sizes and nucleation rates accessible in a
simulation increases for bigger systems.

Just to get a better idea and to simplify the comparison
let us analyze the influence of the size at a fixed value of the
density N /V, or equivalently, the supersaturation. Figure 4

plots the differences in the barrier, the critical cluster size,
and the rate as a function of N for three different values of
the supersaturation S0, i.e., the density. Essentially, we look
at cuts through Fig. 2 along the straight dashed lines of con-
stant density.

The deviations arising from finite-size effects can obvi-
ously be very significant for systems of a few hundred atoms,
but become increasingly less important for larger N. In addi-
tion, the discrepancies get bigger the smaller the supersatu-
ration S0 or, equivalently, the higher the nucleation barrier

FIG. 2. �a� Contour plot of the differences in the nucleation barrier between
the open and the closed systems, in units of kT for a system of Lennard-
Jones argon atoms at 85 K, as a function of the total number of molecules N
and the volume V. The light gray areas indicate regions where nucleation is
not possible in the finite system. The dashed lines indicate different constant
values of �G*=5, 10, 20, and 50kT. �b� Contour plot of the differences in
the size of the critical nucleus between the open and the closed systems for
the same conditions. The dashed lines indicate different constant values of
the size of the critical nucleus n*=5, 10, 20, and 50 predicted by CNT. �c�
Ratio of nucleation rates in the closed vs the open system for the same
conditions. The dashed lines in this case indicate different values of the
logarithm of the classical rate, i.e., log�JCNT/cm3 s�=10, 20, 25, and 30.
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�G* and n*. It is also evident that depending on the value of
the supersaturation we are interested in, there is a minimum
system size required for nucleation in a finite system to be
feasible and accurate. For example, notice the deviations in
the rate in Fig. 4�c�. Let us assume that a deviation smaller
than 50% in the rate is acceptable, as indicated by the hori-
zontal line. We then face a dilemma: higher barriers that are
closer to experimental conditions result in much longer
simulation times because the rate exponentially decreases
with �G*. We will naturally be tempted to reduce the system
size N in order to reach longer time scales on the computer.

However, we encounter significantly higher finite-size effects
for higher barriers and we are forced to use even larger N to
compensate. As a result, we might end up running in circles
when trying to reach experimental conditions in a MD simu-
lation.

B. Optimization of the system size

Let us get back to the most practical question: which is
the optimal system size we can choose for a given problem?
We can use our previous analysis to optimize the size and
estimate a bound of the size effect deviation in choosing a
particular system size. For a given system, we can simply
look at the error as a function of N at the density �or super-
saturation� of interest. For the sake of discussing a real case,
let us focus on Ref. 22. Yasuoka and Matsumoto28 simulated
a system containing 5000 LJ-argon atoms at T=80.4 K in a
cubic box of V= �60�LJ�3. The chosen volume and number of
particles as well as the temperature are typical for a number
of MD simulations of nucleation.24,29–32 Figure 5 shows the
predicted finite-size error as a function of N, keeping the
original density constant.

The system size chosen by the authors clearly does not
show any significant size effects. Still, two things need to be
stressed: first, at a system size of, e.g., 500 atoms, the devia-
tion is still less than 0.1kT in the barrier or less than 10% in
the rate, but we can save a factor of up to 100 in the calcu-
lation time. In other words, almost 100 times more simula-
tions or two orders of magnitude of nucleation rates closer to
experiment can be simulated in the same disposable time. An
error of less than 10% is negligible for nucleation rates,
where several orders of magnitude of deviation are common
when comparing theory and experiment or different
experiments.20 Second, Fig. 5 impressively shows that a fur-
ther increase of N is meaningless at this density because the
error does not become significantly smaller for larger N.
Simulating a system of, say, 50 000 atoms can be considered
therefore as a waste of simulation time because no further
information is gained and the error inherited by finite size is

FIG. 3. Same as Fig. 2�a� for a larger range of sizes and volumes.

FIG. 4. �a� Plot of the differences in the nucleation barrier between the open
and the closed systems, in units of kT for a system of Lennard-Jones mol-
ecules at 85 K, as a function of the total number of molecules N for three
different values of the density. The densities correspond to �G*=10kT �solid
line�, 20kT �long-dashed line�, and 50kT �short-dashed line�. �b� Differences
in the size of the critical nucleus between the open and the closed systems
for fixed densities corresponding to n*=10 �solid line�, 20 �long-dashed
line�, and 50 �short-dashed�. �c� Ratio of nucleation rates in the closed vs
the open system for fixed densities corresponding to log�JCNT/cm3 s�=10
�solid line�, 20 �long-dashed line�, and 25 �short-dashed line�.

FIG. 5. �a� Difference of nucleation barriers �solid� and critical cluster sizes
�dashed� in CNT and MLD for a Lennard-Jones argon system at the density
chosen by Yasuoka and Matsumoto �Ref. 28� as a function of the total
number of particles N. �b� Deviation of the nucleation rate for the same
system. The two squares indicate the original system simulated with N
=5000 in comparison with a system at N=500.
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not changed at all, being practically zero. We also repeated
the simulations in Ref. 22 at N=500, and we were able to
reproduce the reported rate with an error of less than 10% in
the rate.

Many simulations of nucleation have been performed on
Lennard-Jones argon.24,28–30,32,33 In the absence of any clear
criterion to select the size, the number of molecules typically
used in these simulations tends to be the largest possible in
terms of computer capacity, on the range of
103–105 molecules. Our analysis indicates that most of these
simulations are practically unaffected by inaccuracies due to
finite-size effects of the kind discussed in this paper—at the
expense of a system that was mostly much larger than actu-
ally needed.

IV. MD SIMULATIONS OF SMALL SYSTEMS

In order to verify the validity of the predictions of the
finite-size effects study, a number of MD simulations of LJ
argon were performed at different system sizes from N=32
to 512 atoms. The simulations were performed at T=50 K
for a high supersaturation �S0=869� and a low supersatura-
tion �S0=610� with the corresponding system densities
�N /V� of 343/ �16 nm�3 and 343/ �18 nm�3. The CNT predic-
tions for the barriers are �G*=22.5kT and �G*=25kT, re-
spectively. The size of N=343 was predicted to be suffi-
ciently large in the way described in the previous section. A
carrier gas was used to thermostat the system in order to rule
out any serious artifacts possibly arising from direct thermo-
stating methods. The simulation method and parameters of
argon are similar to the ones in Ref. 22 except that we used
a simple velocity-scaling thermostat instead of a Nosé-
Hoover thermostat on the carrier gas. The vapor-carrier-gas
ratio was always 1:1 and each condition was simulated at
least 100 times, each run starting from a different configura-
tion of the vapor. Typically, each system showed one nucle-
ation event. The rates were obtained by a newly developed
method based on the concept of mean first-passage time
�MFPT�. The method will be discussed in more detail
elsewhere,34 but the idea is very simple: for each simulation,
the size of the largest cluster in the system is noted at regular
intervals �1000 time steps in our case�, and the time at which
each size n appears for the first time, ti�n�, is stored. The
mean first-passage time 	�n� for each size n is simply ob-
tained by averaging ti�n� over several repetitions of the simu-
lations with different initial configurations. The MFPT 	�n�
is then fitted to the simple expression,

	�n� =
	J

2
�1 + erf�b�n* − n��� , �7�

where 	J, n*, and b are the three fitting parameters, and erf�x�
is the error function. The nucleation rate J is then given in
terms of 	J as

J =
1

	JV
. �8�

Figure 6�a� shows the predicted deviation of the nucle-
ation rate as a function of the total number of atoms N,
similar to Fig. 5�b�. In Fig. 6�b� the nucleation rates of the

MD simulations are given. The simulations clearly follow
the same trend as predicted by the finite-size effects analysis:
for smaller systems, the nucleation rate drops considerably.
More notably, most simulation runs for the smallest system
size did not succeed to nucleate a cluster. For S0=869 �open
symbols� at N=32, a cluster of size 30 was found only in 34
out of 100 simulations and none of the systems showed a
fully condensed cluster of 32 atoms, indicating that the clus-
ter may have reached a stable minimum such as the example
in Fig. 1�a�. In the case of the higher barrier �S0=610, filled
symbols� at N=32, no system has succeeded in forming a
cluster larger than n=15, confirming that the finite-size ef-
fects are more pronounced in the high barrier case. For the
cases in which the formation of a nucleus occurred so rarely,
the reported “rates” for these systems in Fig. 6�b� are esti-
mated as the fraction of systems that succeeded to nucleate a
cluster in 100 simulations in the total simulation time
�500 ns in this study�. For the system with N=32 and S0

=610 mentioned above, the reported rate is just very roughly
estimated as one nucleus per 100 simulations to at least in-
dicate how sharply the nucleation rate drops at small system
sizes.

The nucleation rate shows no significant change beyond
a size of N=200, which is in good agreement with the pre-
diction shown in Fig. 6�a�. Note that the latter case shows the
difference in rate compared to an open system, while Fig.
6�b� only shows the actual rate itself. Although the nucle-
ation rates seem to drop again slightly for higher N in the
low barrier case, these small deviations most likely arise
from other competing factors such as the thermostating ef-
fects. The larger the system, the higher the chance that the
system will show more than one nucleus or at least a higher
number of larger fluctuations, which will inevitably increase
the latent heat released to the system. Since the cooling of

FIG. 6. �a� Predicted deviation of the nucleation rate �J as a function of N
at 50 K for a system of LJ argon atoms with a low �solid� and high �dashed�
nucleation barriers. The vertical line marks the starting system size of N
=343 atoms. �b� Nucleation rates obtained from MD simulations at 50 K
and constant density as a function of N. The open symbols correspond to a
high density, low barrier system �S0=869 and �G*=22.5kT�, while the filled
symbols represent a system with a higher nucleation barrier �S0=610 and
�G*=25kT�. The nucleation rate drops for small systems as predicted.
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the system is performed by the same relative amount of car-
rier gas, the rate will go slightly down. This would also ex-
plain the slightly different trend in the high barrier case be-
cause this “thermostat effect” is less pronounced at a higher
barrier, i.e., a lower nucleation rate. A thorough discussion of
the influence of different thermostats on simulations of
nucleation is currently in preparation.35

V. CONCLUSION

The process of nucleation and, in particular, the forma-
tion of a liquid drop proceeds differently in closed and open
systems. In the closed system, finite-size effects can become
very important, for example, in molecular dynamics simula-
tion of nucleation, where we typically deal with a fixed num-
ber of molecules and a fixed volume of the system. The
relevance of these effects can be quantified using a rigorous
thermodynamic description in terms of the modified liquid
drop �MLD� model. This model properly accounts for the
effects of the finite volume and the depletion of molecules
involved in the formation of one liquid drop in a finite sys-
tem. Our analysis can be extended to the potential presence
of two or more clusters in the system and the usage of a real
instead of an ideal gas without changing the implications of
our results.

In the cases studied, the magnitude of the deviations can
reach several kT in the nucleation barrier or tens of mol-
ecules in the size of the critical cluster, which translate in
deviations of the nucleation rate of up to two or three orders
of magnitude for very small systems. A more crucial effect of
the confinement is the alteration of the onsets of nucleation.
For small systems, it is impossible to observe nucleation in a
wide range of supersaturation at which it would easily occur
in a big system or experiment. These effects become increas-
ingly less important as the number of molecules in the sys-
tem grows. In fact, the results of most MD simulations of
nucleation found in literature show only little and commonly
negligible size effects. However, it turns out that these simu-
lations could have been performed safely at much smaller
systems without encountering significant size effects on the
results.

The method described in this paper provides a simple
starting point to estimate a minimum system size beyond
which finite-size effects become insignificant. It can save
valuable simulation time on single simulations in favor of
more simulations at the same conditions of nucleation, lead-
ing to better statistics of the observed state. Alternatively,
simulations with a smaller number of atoms can run longer,
making lower supersaturations more accessible. We could
also verify the validity of the predictions by MD simulations
of LJ argon vapor.

Although most Monte-Carlo �MC� simulations of nucle-
ation are performed in the NPT or �VT ensemble, these
conclusions will also affect MC simulations in the canonical
ensemble. Finally, our analysis and results are also applicable
to other situations, such as crystallization,36 capillary
condensation,37 or the melting of nanoclusters.38
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