Self-Assembling Amphiphilic Systems

Dr. Helge Klemmer

Physical Chemistry, University of Cologne, D-50939 Köln, Germany

Funktionen & Anwendungen

Sommersemester 2014

It's the amphiphile content that matters

Low surfactant content, low energy input: emulsions (usually micrometer size, very instable)

Low surfactant content, high energy input: nanoemulsions (usually nanometer size, slightly kinetically stable)

High surfactant content, just thermal energy: microemulsions (lower nanometer size, thermodynamically stable)

Non-amphiphile systems: *e.g.* Pickering emulsions

thermodynamically stable, macroscopically homogeneous but nano-structured phases of at least 3 components — (B) (C) (A) hydrophililic —hydrophobic—amphiphilic component non-ionic water *n*-alkanes & ionic glycerol triglycerides, monomers surfactants monomers super-critical fluids

Binary Water – Surfactant Systems / Surfactant types

non-ionic surfactants

ethylene glycol monoalkyl ether (C_iE_j)

alkylpolyglucoside (C_iG_j)

ionic surfactants

anionic

sodium bis(2-ethylhexyl) sulphosuccinate (AOT)

cationic

dodecyl trimethylammonium bromide (DTAB)

Binary side-systems

Water (A) – $C_i E_j$ (B) Systems / upper miscibility gap

Water (A) – $C_{12}E_j$ (B) / Variation of j

Water (A) – $C_i E_j$ (B) / Micelle formation - cmc

Water – C_iE_i Systems / Liquid crystalline phases

Water – $C_{12}E_6$ / more self-assembly

10

Water $-C_{12}E_5$ System / dilute self-assembled phases

Ternary microemulsion systems / Gibbs phase triangle

Gibbs phase prism

Sections through the phase prism

Isothermal sections - phase inversion

Sections through the phase prism

Isoplethal $T(\gamma)$ -section I

Isoplethal $T(\gamma)$ -section II

Efficiency – Phase inversion temperature

 $H_2O - n$ -octane – C_iE_i

Techniques:

direct: Transmission Electron Microscopy (TEM)

indirect: Scattering Techniques

- Small Angle Neutron Scattering (SANS)
- Small Angle X-Ray Scattering
- Dynamic Light Scattering

Diffusion NMR

Electric Conductivity

20

Microstructure – TEM I

$H_2O - n$ -octane - $C_{12}E_5$

FFDI

21

L. Belkoura, C. Stubenrauch, and R. Strey, Langmuir (2004)

Microstructure – TEM II

From networks to bicontinuous microemulsions $H_2O - n$ -octane - $C_{12}E_5$

L. Belkoura, private communication

Microstructure – TEM III

$H_2O - n$ -octane - $C_{12}E_5$

FFDI

FFEM

23

L. Belkoura, C. Stubenrauch, and R. Strey, Langmuir (2004)

Microstructure – Overwiew

R. Strey, Colloid Polym. Sci., 272 (8), 1005 (1994).

Microstructure – Length Scales I

Small angle neutron scattering (SANS)

M. Gradzielski, D. Langevin, L. Magid, and R. Strey, J. Phys. Chem. 99, 13232 (1995) M. Teubner and R. Strey, J. Chem. Phys. 87, 3195 (1987) University of Cologne

25

Lichtstreuung set-up

Lichtstreuung set-up

- Laser $(P > 70 \text{ mW})$ Vorteile: Strahlen parallel, polarisiert,
monochrom, kohärent, Leistung konstant
- Hg-Dampflampe (früher)
kussieroptik: nicht zwingend erforderlich
- in zylindrischer Glasküvette (D=10-25 mm)
- Küvette ist in einem Brechungsindex "gematchten" Bad
n _{Toluol} = n _{Glas} : Vermeidung von Oberflächenreflexion
- Photonenmultiplier (IStrom = I Lichtintensität) Spitzenbelastung
- Photodiode
- Für dynamische Lichtstreuung (DLS)
- Küvette und einfallender Strahl genau im Drehmittelpunkt
\checkmark
konstanter Abstand Probe - Detektor r, keine Strahlenversetzung
nur paralleles Licht wird detektiert

27

Lichtstreuung set-up

Proben-Umgebung

Microstructure – Overwiew

R. Strey, Colloid Polym. Sci., 272 (8), 1005 (1994).

Phase behaviour – Interfacial tensions

Microemulsions, T. Sottmann and R. Strey in Fundamentals of Interface and Colloid Science, Volume V, edited by J. Lyklema, Academic Press (2005) University of Cologne

Variation of oil/water-interfacial tension

 $H_2O - n - C_8H_{18} - C_iE_j$

T. Sottmann and R. Strey, J. Chem. Phys. 106, 8606 (1997)

Theoretical background

Thermodynamic stability: $k_B T \approx \sigma \xi^2$

Structure size approximation: $\xi \approx a \cdot \frac{\varphi(1-\varphi)}{S/V}$

Specific internal interface: $S/V = \phi_{c,i} \cdot \frac{a_c}{v_c}$

Droplet radius approximation: $R = 3 \cdot \frac{v_c}{a_c} \cdot \frac{\phi_A}{\phi_{C,i}} = 3 \cdot l_c \cdot \frac{\phi_A}{\phi_{C,i}}$

T. Sottmann and R. Strey, J. Chem. Phys. 106, 8606 (1997)