Microemulsions: Basic Theory and Structure Kinetics

Dr. Helge Klemmer

Physical Chemistry, University of Cologne, D-50939 Köln, Germany

MN-C-WP/c

Sommersemester 2014

It's the amphiphile content that matters

Low surfactant content, low energy input: emulsions (usually micrometer size, very instable)

Low surfactant content, high energy input: nanoemulsions (usually nanometer size, slightly kinetically stable)

High surfactant content, just thermal energy: microemulsions (lower nanometer size, thermodynamically stable)

Non-amphiphile systems: *e.g.* Pickering emulsions

thermodynamically stable, macroscopically homogeneous but nano-structured phases of at least 3 components — (B) (C) (A) hydrophililic —hydrophobic—amphiphilic component non-ionic water *n*-alkanes & ionic glycerol triglycerides, monomers surfactants monomers super-critical fluids

Binary Water – Surfactant Systems / Surfactant types

non-ionic surfactants

ethylene glycol monoalkyl ether (C_iE_j)

alkylpolyglucoside (C_iG_j)

ionic surfactants

anionic

sodium bis(2-ethylhexyl) sulphosuccinate (AOT)

cationic

dodecyl trimethylammonium bromide (DTAB)

Binary side-systems

Water (A) – $C_i E_j$ (B) Systems / upper miscibility gap

Water (A) – $C_{12}E_j$ (B) / Variation of j

Water (A) – $C_i E_j$ (B) / Micelle formation - cmc

Water – C_iE_i Systems / Liquid crystalline phases

Water – $C_{12}E_6$ / more self-assembly

10

Water $-C_{12}E_5$ System / dilute self-assembled phases

Gibbs phase prism

Sections through the phase prism

Isothermal sections - phase inversion

Sections through the phase prism

Isoplethal $T(\gamma)$ -section I

Isoplethal $T(\gamma)$ -section II

Efficiency – Phase inversion temperature

 $H_2O - n$ -octane – C_iE_i

 $\Phi = 0.50 = const.$

Phase behaviour – Interfacial tensions

Microemulsions, T. Sottmann and R. Strey in Fundamentals of Interface and Colloid Science, Volume V, edited by J. Lyklema, Academic Press (2005) University of Cologne

Variation of oil/water-interfacial tension

 $H_2O - n - C_8H_{18} - C_iE_j$

20

T. Sottmann and R. Strey, J. Chem. Phys. 106, 8606 (1997)

Techniques:

direct: Transmission Electron Microscopy (TEM)

indirect: Scattering Techniques

- Small Angle Neutron Scattering (SANS)
- Small Angle X-Ray Scattering
- Dynamic Light Scattering

Diffusion NMR

Electric Conductivity

21

Microstructure

R. Strey, Colloid Polym. Sci., 272 (8), 1005 (1994).

Microstructure – Length Scales

Small angle neutron scattering (SANS)

M. Gradzielski, D. Langevin, L. Magid, and R. Strey, J. Phys. Chem. 99, 13232 (1995) M. Teubner and R. Strey, J. Chem. Phys. 87, 3195 (1987) University of Cologne

23

Sections through the phase prism

Redrawn from:

The $T(w_A)$ -Cut

The Mixing Pathway

The Experimental Setup

BioLogic stopped flow combined with:

High temperature stability:

 $\Delta T \leq 0.1$ K for 273 K $\leq T \leq 343$ K

J. S. Pedersen, J Appl Crystallogr, 1994, 27, 595-608.

31 M. Kotlarchyk, S. H. Chen and J. S. Huang, Phys Rev A, 1983, 28, 508-511.

- M. Gradzielski, D. Langevin, L. Magid and R. Strey, J Phys Chem-Us, 1995, 99, 13232-13238.
 - T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.

T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.

J. S. Pedersen, J Appl Crystallogr, 1994, 27, 595-608.

32 M. Kotlarchyk, S. H. Chen and J. S. Huang, Phys Rev A, 1983, 28, 508-511. M. Gradzielski, D. Langevin, L. Magid and R. Strey, J Phys Chem-Us, 1995, 99, 13232-13238.

- T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.
 - T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.

J. S. Pedersen, J Appl Crystallogr, 1994, 27, 595-608.

M. Kotlarchyk, S. H. Chen and J. S. Huang, Phys Rev A, 1983, 28, 508-511.
 M. Gradzielski, D. Langevin, L. Magid and R. Strey, J Phys Chem-Us, 1995, 99, 13232-13238.

- T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys. 2008, 128.
 - T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.

- M. Kotlarchyk, S. H. Chen and J. S. Huang, Phys Rev A, 1983, 28, 508-511.
 M. Gradzielski, D. Langevin, L. Magid and R. Strey, J Phys Chem-Us, 1995, 99, 13232-13238.
 - T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys. 2008, 128.
 - T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.

J. S. Pedersen, J Appl Crystallogr, 1994, 27, 595-608.

35 M. Kotlarchyk, S. H. Chen and J. S. Huang, Phys Rev A, 1983, 28, 508-511. M. Gradzielski, D. Langevin, L. Magid and R. Strey, J Phys Chem-Us, 1995, 99, 13232-13238.

T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128. T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.

J. S. Pedersen, J Appl Crystallogr, 1994, 27, 595-608.

M. Kotlarchyk, S. H. Chen and J. S. Huang, Phys Rev A, 1983, 28, 508-511.
 M. Gradzielski, D. Langevin, L. Magid and R. Strey, J Phys Chem-Us, 1995, 99, 13232-13238.

- IVI. Gradzielski, D. Langevin, L. Magid and R. Strey, J Phys Chem-Us, 1995, 99, 13232-13238 T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.
 - T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.

37 M. Kotlarchyk, S. H. Chen and J. S. Huang, Phys Rev A, 1983, 28, 508-511. M. Gradzielski, D. Langevin, L. Magid and R. Strey, J Phys Chem-Us, 1995, 99, 13232-13238.

- T. Foster, T. Sottmann, R. Schweins and R. Strey, J Phys Chem Phys, 2008, 128.
 - T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.

- 38 M. Kotlarchyk, S. H. Chen and J. S. Huang, Phys Rev A, 1983, 28, 508-511. M. Gradzielski, D. Langevin, L. Magid and R. Strey, J. Phys. Chem. Let 1995, 99, 133
 - M. Gradzielski, D. Langevin, L. Magid and R. Strey, J Phys Chem-Us, 1995, 99, 13232-13238.
 - T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128. T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.

39 M. Kotlarchyk, S. H. Chen and J. S. Huang, Phys Rev A, 1983, 28, 508-511.

- M. Gradzielski, D. Langevin, L. Magid and R. Strey, J Phys Chem-Us, 1995, 99, 13232-13238.
 - T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.

T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.

J. S. Pedersen, J Appl Crystallogr, 1994, 27, 595-608.

40 M. Kotlarchyk, S. H. Chen and J. S. Huang, Phys Rev A, 1983, 28, 508-511.

- M. Gradzielski, D. Langevin, L. Magid and R. Strey, J Phys Chem-Us, 1995, 99, 13232-13238.
 - T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.

T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.

Time-resolved Water Uptake

Time-resolved Radial Growth

D₂O/NaCl – cyclohexane-h12 – C₁₀E₅/PEB4.8-PEO4.8 ε = 0.001, γ_b =0.05, δ = 0.05 (bulk contrast)

D₂O/NaCl – cyclohexane-h12 – C₁₀E₅/PEB4.8-PEO4.8 ε = 0.001, γ_b =0.05, δ = 0.05 (bulk contrast)

$D_2O/NaCI - cyclohexane-d/h12 - C_{10}E_5/PEB4.8-PEO4.8$ $\epsilon = 0.001, \gamma_b=0.05, \delta = 0.05$ (film contrast)

J. S. Pedersen, J Appl Crystallogr, 1994, 27, 595-608.
M. Kotlarchyk, S. H. Chen and J. S. Huang, Phys Rev A, 1983, 28, 508-511.
M. Gradzielski, D. Langevin, L. Magid and R. Strey, J Phys Chem-Us, 1995, 99, 13232-13238.
T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.
T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.

 $D_2O/NaCl - cyclohexane-h12 - C_{10}E_5/PEB4.8-PEO4.8$ $\epsilon = 0.001, \gamma_b=0.05, \delta = 0.05$ (film contrast)

$D_2O/NaCl - cyclohexane-h12 - C_{10}E_5/PEB4.8-PEO4.8$ $\epsilon = 0.001, \gamma_b=0.05, \delta = 0.10$ (bulk contrast)

D₂O/NaCl – cyclohexane-h12 – C₁₀E₅/PEB4.8-PEO4.8 ε = 0.001, γ_b =0.05, δ = 0.10 (bulk contrast)

$D_2O/NaCl - cyclohexane-d/h12 - C_{10}E_5/PEB4.8-PEO4.8$ $\epsilon = 0.001, \gamma_b=0.05, \delta = 0.10$ (film contrast)

T. Foster, T. Sottmann, R. Schweins and R. Strey, J Chem Phys, 2008, 128.

 $D_2O/NaCl - cyclohexane-h12 - C_{10}E_5/PEB4.8-PEO4.8$ $\epsilon = 0.001, \gamma_b=0.05, \delta = 0.10$ (film contrast)

 $\tau_{radial growth}$ = (5925±1876) ms

Theoretical background

Thermodynamic stability: $k_B T \approx \sigma \xi^2$

Structure size approximation: $\xi \approx a \cdot \frac{\varphi(1-\varphi)}{S/V}$

Specific internal interface: $S/V = \phi_{c,i} \cdot \frac{a_c}{v_c}$

Droplet radius approximation: $R = 3 \cdot \frac{v_c}{a_c} \cdot \frac{\phi_A}{\phi_{C,i}} = 3 \cdot l_c \cdot \frac{\phi_A}{\phi_{C,i}}$

Approximate structure size: $\xi \approx 2\pi / q_{\text{max/min}}$

T. Sottmann and R. Strey, J. Chem. Phys. 106, 8606 (1997)

52