# Keimbildung

Department für Chemie Physikalische Chemie Universität zu Köln

Dr. Judith Wölk



# **Motivation**

- Atmosphärische Aerosol Bildung
- **Partikel Herstellung:** 
  - Bildung von Nanokristallen
  - Herstellung von qualitativ hochwertigen Pudern .
  - Medizin: Bildung von Gallensteinen .
- Kontrolle der Keimbildung in
  - Turbinen, Dampfturbinen
  - Reaktionsgefäßen
  - Windtunneln
  - Düsenflugzeugen









# **Motivation**





# Grundlagen

• Keim:

Kleiner Körper, einer neuen Phase, der sich mit der ihn umgebenden Mutterphase im labilen Gleichgewicht befindet.



# Grundlagen

#### Keimbildung: Phasenübergang erster Ordnung





# Grundlagen

#### **Heterogene Keimbildung**



#### **Homogene Keimbildung**



Keime, die durch Anlagerung der sich ausscheidenden Substanz an einem Fremdkörper entstehen

Keime, die durch eine vielstufige homogene Reaktion entstehen.



- Wasser
- Alkohole
- Argon



### **Experimentelle Methoden**



Keimbildungsrate: Zahl der Teilchen die pro cm<sup>-3</sup> und Sekunde gebildet werden





Schematische Darstellung der Messapparatur

| V1, V2, V3      | Verdampfer                 |
|-----------------|----------------------------|
| P1, P2, P3, P4  | MKS Baratrons              |
| R               | Mischkolben                |
| N <sub>Vi</sub> | Nadelventile               |
| Vi              | Absperrventile             |
| Pi              | Regelvolumina              |
| G1              | Argongasflasche            |
| G2              | Stickstoffgasflasche       |
| T               | Thermostaten               |
| R <sub>v</sub>  | elektronisches Regelventil |
| Man1, Man2      | analoge Manometer          |
| Ch              | Nukleationspulskammer      |
|                 | elektronische Regelleitung |
|                 |                            |















Mie-Streuung: Streuung an sphärischen Objekten,

deren Durchmesser in etwa der Wellenlänge der Strahlung entspricht.





CAMS: P. E. Wagner, J. Colloid Interface Sci. 105, 456 (1985)









A.Fladerer, M. Kulmala, and R. Strey, J. Aerosol Sci. 33, 391 (2002)





CAMS: P. E. Wagner, J. Colloid Interface Sci. 105, 456 (1985)



#### **Keimbildungsraten / Wasser**



J. Wölk, R. Strey, J. Phys. Chem. 105, 11683, (2001)

Becker, R., and Döring, W., Ann. Phys. 24, pp. 719 (1935).

Universität zu Köln



### **Keimbildungsraten / Wasser**





### Kritische Clustergröße





### Laminar flow diffusion chamber - LFDC



H. Lhihavaninen Y. Viisanen, J.Phys.Chem. B, **105**,11619, 2001 A. Manka, Promotionsvortrag, Universität zu Köln, 2011



### LFDC: experimentelle Keimbildungsrate







Kim Y.J., Wyslouzil B.E., Wölk J., Strey R., AAAR (2002).













# **Supersonic Nozzle**













28

Universität zu Köln



# Überschalldüse - SANS





#### Keimbildungsraten



Mikheev, V.B.; Irving, P.M.; Laulainen, N.S.; Barlow, S.E.; Pervukhin, V.V. J. Chem. Phys. 116, 10772 (2002) J. Wölk and R. Strey, J. Phys. Chem. B, 105, 11683 (2001) Universität zu Köln Kim Y.J. Wyslouzil B.E. Wilemski G. Wölk J. Strey R. J. Phys. Chem. A 108, 4365 (2004)



# **CAMS-SANS-SAXS**

- Nukleationspulskammer und Überschalldüse liefern Keimbildungsraten
- Verwendete Streumethoden:

#### CAMS:

- 200 nm 3 μm
- geringe Anzahldichte

### SANS:

- 1-200 nm
- hohe Anzahldichte
- Kontrastierung möglich

### SAXS:

- 0.1-50 nm
- hohe Anzahldichte
- hohe Intensität
- exakte Wellenlänge
- APS: Punktgeometrie



#### Diffusionsnebelkammer



4 STRANDS OF NICHROME HEATER WIRE ON CUTSIDE OF GLASS RING OMITTED FOR CLARITY.

FIG. 2. Cutaway view of diffusion cloud chamber.





FIG. 1. Variation with height of the mass densities of the carrier gas  $\rho_b$  and the vapor  $\rho_a$ , the equilibrium vapor pressure  $P_e$ , the partial pressure of the vapor P, the temperature T, and the supersaturation  $P/P_e$ . Illustrated with data from hexane point 6.





#### single piston exp. chamber



F10. 1. Schematic diagram of the cloud chamber.



FIG. 2. Typical chamber expansion cycle for ethanol. The inset graph shows the shape of the nucleation pulse. See the text for an explicit expression for the pulse as a function of time and pressure.



#### piston expansion wave tube





#### pulse expansion wave tube





Fig. 6. Pulse-expansion wave tube setup

Fig. 2. x-t diagram of the wave pattern in the pulse-expansion wave tube with schematic tube configuration and pressure versus time diagram. The dashed lines show the position of the local widening. A nucleation pulse is formed at the observation point O at the endwall of the HPS. D denotes the position of the diaphragm. The diagrams were calculated with the Random Choice numerical Method (RCM). The calculations were done with nitrogen gas, with pressures of 2 bar in the HPS, and 1 bar in the LPS





#### pulse expansion wave tube







Fig. 5. Simulation of the nucleation rate by classical nucleation theory for water vapour during the nucleation pulse. The pressure history is taken from an experimental run





#### Keimbildungsraten



A. Manka, Doktorarbeit, Universität zu Köln (2011)



### Theorie

classical nucleation theory

#### Annahmen:

- 1. sphärisch, inkompressibel, homogen mit scharfer Grenzfläche
- 2. Dampfphase verhält sich ideal
- 3. Flüssigkeit hat die gleiche thermodynamischen Eigenschaften (Grenzflächenspannung, Dichte, Dampfdruck) wie eine flache bulk-Phase

 $J = K \exp\left\{-\frac{\Delta G^*}{kT}\right\}$ 

K = kinetischer Vorfaktor

 $\Delta G^*$  = Keimbildungsarbeit



$$\Delta G(n) = G(n) - G(0)$$

- G(n) freie Gibb's Enthalpie eines Systems bestehend aus Dampfphase und einem Tropfen der Größe *n*
- G(0) freie Gibb's Enthalpie der reinen Dampfphase

Von der Thermodynamik wissen wir, dass die freie Gibb's – Enthalpie gegeben ist mit:

$$G(p,T,N) = U - TS + pV = \mu N$$

Für die reine Dampfphase gilt somit:

$$G(0) = \mu_v N$$



Die freie Gibb's - Enthalpie G(n) eines Systems bestehend aus einer Dampfphase und einem Tropfen der Größe n ist gegeben durch:

$$G(n) = \mu_v N_v + \mu_i n + \sigma A$$

mit  $\Delta G(n) = G(n) - G(0)$ 

$$\Delta G(n) = \mu_v N_v + \mu_l n + \sigma A - \mu_v N$$

$$= \mu_v (N - n) + \mu_l n + \sigma A - \mu_v N$$

$$= -\mu_v n + \mu_l n + \sigma A$$

 $\Delta G(n) = -n \Delta \mu + \sigma A \qquad \Delta \mu = \mu_v - \mu_l$ 



#### **Evaluierung von** $\Delta \mu$ :

Gibbs-Duhem Gleichung bei konstanter Temperatur:  $Nd\mu_v = Vdp_v$ 

Annahme - Dampf verhält sich ideal:  $p_v = NkT / V$ 

$$d\mu_{v} = \frac{V}{N} dp_{v} = kT \frac{dp_{v}}{p_{v}}$$

$$\Rightarrow \int_{\mu_{v}^{eq}}^{\mu_{v}} d\mu_{v} = kT \int_{p_{v}^{eq}}^{p_{v}} \frac{dp_{v}}{p_{v}}$$

$$\Rightarrow \mu_v(p_v) - \mu_v^{eq}(p_v^{eq}) = kT \ln(p_v / p_v^{eq})$$

41

V/N=kT/pv



Für die Flüssigkeit mit Grenzfläche ist die Gibbs-Duhem Gleichung:

$$d\mu_l = \frac{V_l}{n} dp_l = v_l dp_l$$

v<sub>l</sub> ist das molare Volumen der flüssigen Phase

Annahme: inkompressible Flüssigkeit: =>  $v_l$ =const. wenn der Druck variiert

$$\Rightarrow \int_{\mu_l^{eq}(p_l^{eq})}^{\mu_l(p_v)} d\mu_l = v_l \int_{p_l^{eq}}^{p_v} dp_l \Rightarrow \mu_l(p_v) - \mu_l^{eq}(p_v^{eq}) = v_l(p_v - p_l^{eq})$$



Im Gleichgewicht :

$$p_{eq} = p_v^{eq} = p_l^{eq}$$

$$\Delta \mu = \mu_v - \mu_l = kt \ln(p_v / p_{eq}) - v_l(p_v - p_{eq})$$

$$\Rightarrow \Delta \mu = kt \ln S - v_l p_{eq} (S - 1)$$

 $v_l p_{eq}(S-1)$  Volumenterm, typischerweise sehr klein => vernachlässigbar

$$\Rightarrow \Delta \mu = kt \ln S$$



 $p_v$ 

 $p_{eq}$ 

S

Volumen eines inkompressiblen, flüssigen und sphärischen Tropfens:

$$V_l = nv_l = \frac{4\pi}{3}r_n^3$$

 $r_n$  = Radius eines Tropfens der Größe n

Oberfläche des Tropfens:

2

$$A = 4\pi r_n^2$$
  
$$\Delta G(n) = -n\Delta\mu + \sigma A = -\frac{4\pi r_n^3}{3v_l} kT \ln S + \sigma 4\pi r_n^2$$







# kritische Clustergröße







# Theorie

Classical nucleation theory [Becker and Döring 1935]:

$$J_{CNT} = \sqrt{\frac{2\sigma}{\pi m}} v_l \left(\frac{p_v}{kT}\right)^2 \exp\left\{-\frac{16\pi v_l^2 \sigma^3}{3(kT)^3 (\ln S)^2}\right\}$$

- Self consistent theory [Girshick and Chiu 1990]:  $\Delta G_{GC} = -(n-1)\Delta\mu + \sigma A_n - \Theta \quad \Theta = \frac{(36\pi)^{1/3} v_l^{2/3} \sigma}{kT} \quad J_{GC} = J_{CNT} \frac{1}{S} \exp(\Theta)$
- Reiss-Kegel-Katz theory [Reiss, Kegel and Katz 1997]:

$$J_{RKK} = \frac{R_e}{S} J_{BD} = \frac{1}{S} \sqrt{\frac{v_l}{kT\kappa n}} \exp\left\{\Theta\right\} J_{CNT} = \sqrt{\frac{v_l}{kT\kappa n}} J_{GC}$$

R. Becker und W. Döring, Ann. Phys., 24, 719 (1935)
S.L.Girshick and C.P. Chiu, J. Cherm. Phys. 93,1273 (1990)
H.Reiss, W.K.Kegel, J.L:Katz, Phys.Rev.Lett., 78, 4506 (1997)



# Theorie







# **Keimbildungsraten / Wasser**



J. Wölk and R. Strey, J. Phys. Chem. B, 105, 11683 (2001)



# Analyse



J. Wölk and R. Strey, J. Phys. Chem. B, 105, 11683 (2001)



## empirische Korrelation





# Keimbildungsraten



Mikheev, V.B.; Irving, P.M.; Laulainen, N.S.; Barlow, S.E.; Pervukhin, V.V. J. Chem. Phys. 116, 10772 (2002) J. Wölk and R. Strey, J. Phys. Chem. B, 105, 11683 (2001) Kim Y.J. Wyslouzil B.E. Wilemski G. Wölk J. Strey R. J. Phys. Chem. A 108, 4365 (2004)

