Mathematisch-Naturwissenschaftliche

Grundlegung

WS 2014/15

Chemie I

05.12.2014

Dr. Helge Klemmer

Gase – Flüssigkeiten – Feststoffe

Wiederholung Teil 1 (28.11.2014)

Fragenstellungen:

Druckanstieg im Reaktor bei Temperaturerhöhung und Produktbildung? Wie groß ist die Masse an Luft in einem Heissluftballon oder dem Hörsaal?

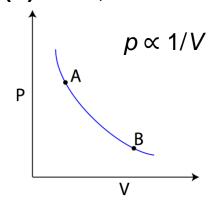
Ideale Gase:

Keine zwischenmolekularen Wechselwirkungen (z.B. Edelgase wie Ne, Ar) Wenig Gasmoleküle \rightarrow großes Volumen V [m³], kleiner Druck p [N/m²]

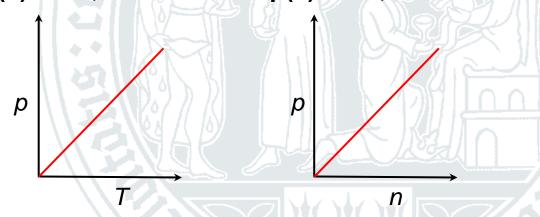
Druck:

$$p = \frac{Kraft}{Fl\ddot{a}che} = \frac{F}{A}$$

SI-Einheit: 1 Pascal (Pa) = 1 N/m² 1 bar = 1·10⁵ Pa 1 atm = 1.103·10⁵ Pa 760 Torr = 760 mm Hg = 1 atm


Messen des Drucks:

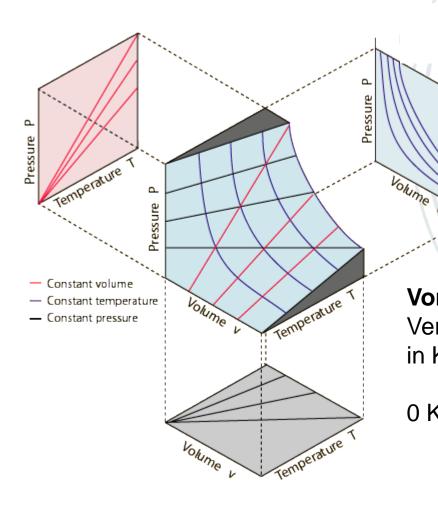
Barometer, U-Rohr Manometer, Membranmanometer



Gase – Flüssigkeiten – Feststoffe

Wiederholung Teil 1 (28.11.2014)

p(V) bei T, n = konstant p(T) bei V, n = konstant p(n) bei V, T = konstant



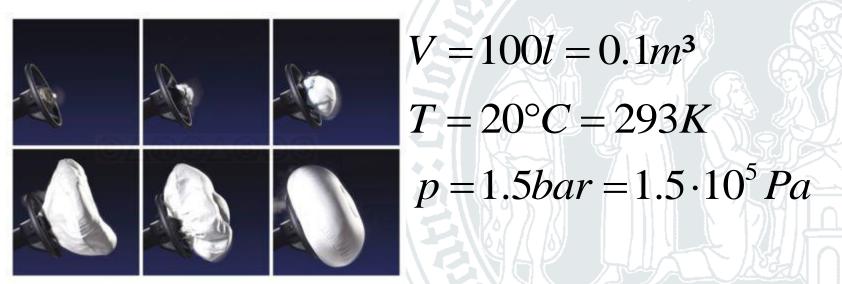
$$p = R \cdot \frac{n \cdot T}{V}$$

mit R: Allgemeine Gaskonstante (8.314 J/(mol·K)

Ideales Gasgesetz

$$p \cdot V = n \cdot R \cdot T$$

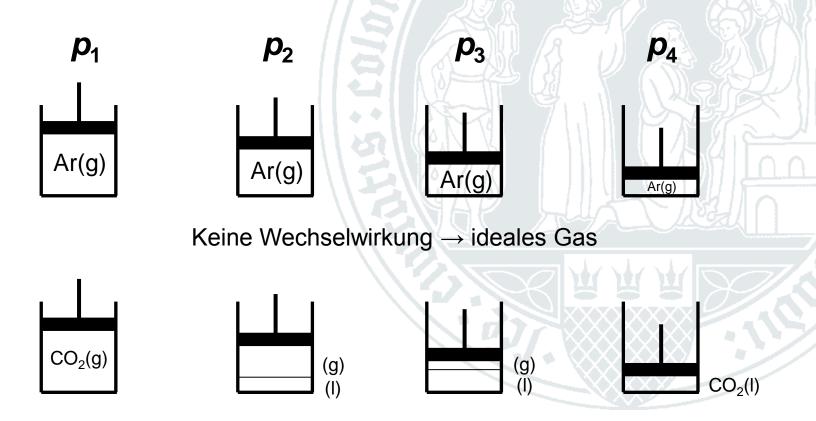
Beschreibt den Zustand eines idealen Gases


Vorsicht:

Verwenden Sie die absolute Temperatur *T* in Kelvin [K]

 $0 \text{ K} = -273.15 ^{\circ}\text{C} \text{ und } 298.15 \text{ K} = 25 ^{\circ}\text{C}$

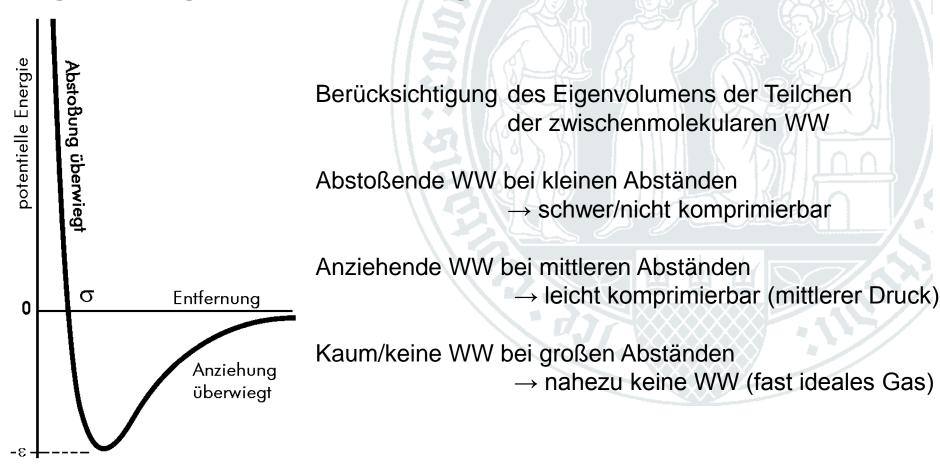
Ideales Gasgesetz - Anwendungsbeispiel


$$4 \text{ NaN}_3 (s) + O_2 (g) \rightarrow 6 \text{ N}_2 (g) + 2 \text{ Na}_2 O (s)$$

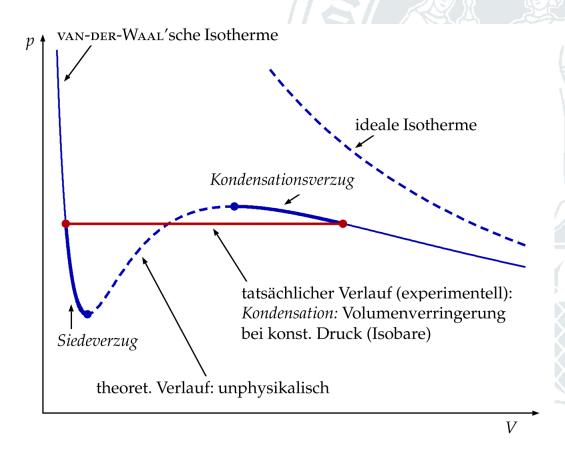
Wie viel Natriumazid muss umgesetzt werden, um den Airbag aufzublasen?

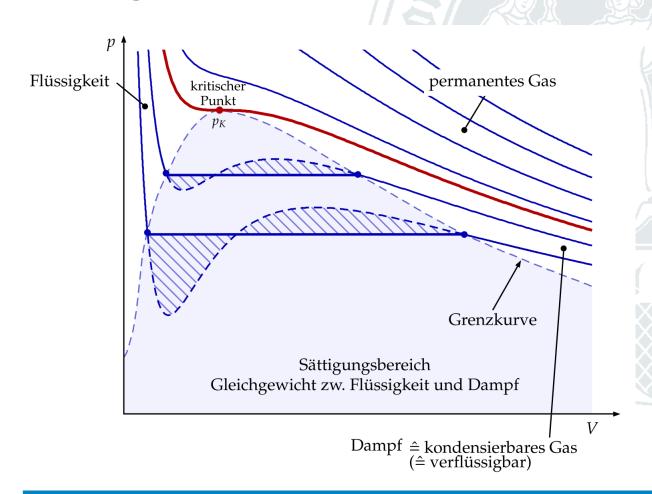
$$n = \frac{p \cdot V}{R \cdot T} = \frac{1.5 \cdot 10^5 Pa \cdot 0.1 m^3 \cdot K \cdot mol}{8.314 J \cdot 293 K} = 6.16 mol$$

Aber, da 4 mol NaN₃ 6 mol N₂ liefern, müssen 4.11 mol NaN₃ umgesetzt werden!



Intramolekulare Wechselwirkung \rightarrow reales Gas


Begründung der Beobachtung: Warum kondensiert Gas?


Lennard – Jones Potential

p(V) - Diagramm: Die van der Waals Gleichung

p(V) - Diagramm: Die van der Waals Gleichung

Reale Gase - Van der Waals Gleichung

Berücksichtigung des Eigenvolumens (abstoßende WW)

$$p = \frac{n \cdot R \cdot T}{V \, \Psi nb}$$

Berücksichtigung der anziehenden WW

→ geringere Stoßhäufigkeit mit Wänden und geringere Stoßkraft proportional zur Teilchenkonzentration (n/V)

$$p = \frac{n \cdot R \cdot T}{V - nb} - a \cdot \left(\frac{n}{V}\right)^2$$

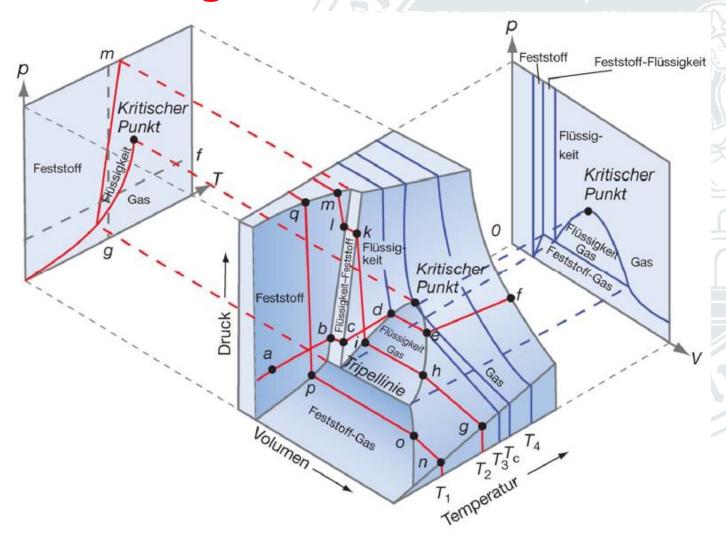
Reale Gase - Anwendungsbeispiel

In einem Reaktor werden 300 kg Stickstoff bei konstantem Volumen $V=2~{\rm m}^3$ auf eine Temperatur von $T=250~{\rm ^{\circ}C}$ gebracht. Wie groß ist der Druck nach der

- idealen Gasgleichung?
- van der Waals Gleichung?

Die van der Waals Parameter haben die Werte $a = 0.139 \text{ m}^6 \cdot \text{Pa/mol}^2$ und $b = 3.913 \cdot 10^{-5} \text{ m}^3/\text{mol}$.

Lösungsweg: Stoffmenge Stickstoff
$$N_2$$
: $n(N_2) = \frac{m(N_2)}{M(N_2)} = \frac{300kg}{0.0282kg/mol} = 10638mol$


$$p(ideal) = \frac{n \cdot R \cdot T}{V} = \frac{10638mol \cdot 8.314J \cdot 523K}{2m^3 \cdot K \cdot mol} = 2.31 \cdot 10^7 Pa = 231bar$$

$$p(vdW) = \frac{n \cdot R \cdot T}{V - nb} - a \cdot \left(\frac{n}{V}\right)^2 = \frac{10638mol \cdot 8.314J \cdot 523K}{\left(2 - 10638mol \cdot 3.913 \cdot 10 - 5\frac{1}{mol}\right)m^3 \cdot K \cdot mol} - 0.139\frac{Pa}{mol^2} \cdot \left(\frac{10639mol}{2m^3}\right)^2$$

$$=2.53\cdot10^{7} Pa = 253bar$$

Phasendiagramm eines Reinstoffs

Thermodynamik – Arbeit und Wärme

Die Untersuchung der Umwandlung von Energieformen

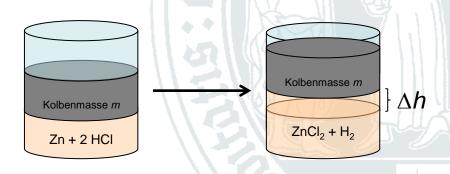
→ beschreibt die Energiebilanz chem. oder phys. Prozesse

Warum werden chemische Gleichgewichte erreicht?
Wie sieht die Zusammensetzung im Gleichgewicht aus?
Wie erzeugen Zellen chemische Energie für biologische Prozesse?

System und Umgebung

System: Probe deren Eigenschaften untersucht werden

Umgebung: Rest des Universums – System wird von der Umgebung betrachtet



Thermodynamik – Arbeit und Wärme

Energieübertragung bei einer Beispielreaktion:

$$Zn (s) + 2 HCl (aq) \rightarrow ZnCl_2 (aq) + H_2 (g)$$

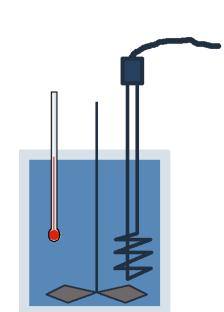
 T_1 < T_2

Entstehendes Gas drückt den Kolben hoch und leistet dabei Arbeit

Hubarbeit: $\Delta w = m \cdot g \cdot \Delta h$

Zusätzlich wird Arbeit in Form von Wärme Δq an das System abgegeben (exotherm)

$$\Delta q = c_{s,p} \cdot m \cdot \Delta T = c_{s,p} \cdot m \cdot (T_2 - T_1)$$



Thermodynamik – Messung der Wärme

Wird einem System Wärme zugeführt, so steigt die Temperatur!

→ ein Kalorimeter ermöglicht die Messung dieser Wärme

Experiment: Flüssigkeitskalorimeter zur Bestimmung der Wärmekapazität flüssiger Stoffe

Heizspirale erzeugt elektrische Arbeit:

$$\mathbf{w} = \mathbf{I} \cdot \mathbf{\Phi} \cdot \mathbf{t}$$

Messung des durch den elektrischen Strom erzeugten Temperaturanstieg ΔT

$$q = w = I \cdot \Phi \cdot t = c_s \cdot m \cdot \Delta T$$

